Synchronized purification and immobilization of his-tagged β-glucosidase via Fe3O4/PMG core/shell magnetic nanoparticles
نویسندگان
چکیده
In this paper, an efficient and convenient Fe3O4/PMG/IDA-Ni2+ nanoparticles that applied to purify and immobilize his-tagged β-glucosidase was synthesized, in which, Fe3O4/PMG (poly (N, N'-methylenebisacrylamide-co-glycidyl methacrylate) core/shell microspheres were synthesized firstly using distillation-precipitation polymerization, then iminodiacetic acid (IDA) was used to open epoxy rings on the shell of microspheres to the combination of Ni2+. The gene of β-glucosidase that was from Coptotermes formosanus Shiraki was amplified, cloned into the expression vector pET28a with an N-terminal His-tag, and expressed in E.coli BL21. The nanoparticles showed the same purification efficiency as commercial nickel column which was a frequently used method in the field of purifying his-tagged proteins from crude cell lysates. The results indicated that Fe3O4/PMG/IDA-Ni2+ nanoparticles can be considered as an excellent purification material. β-glucosidase was immobilized on the surface of Fe3O4/PMG/IDA-Ni2+ to form Fe3O4/PMG/IDA-β-glucosidase by means of covalent bound with imidazolyl and Ni2+. The immobilized β-glucosidase exhibited excellent catalytic activity and stabilities compared with free β-glucosidase. In addition, immobilized β-glucosidase can be recycled for many times and retain more than 65% of the original activity. The materials display enormous potential in the aspect of purifying and immobilizing enzyme.
منابع مشابه
Affinity Based Nano-Magnetic Particles for Purification of Recombinant Proteins in Form of Inclusion Body
Background: Protein purification is the most complicated issue in the downstream processes of recombinant protein production; therefore, improved selective purification methods are important. Affinity-based protein purification method using His-tag and Ni-NTA resins is one of the most common strategies. MNPs can be used as a beneficial alternative for Ni-NTA resins. However, there is no data on...
متن کاملSimple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability
We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...
متن کاملImmobilization of β-glucosidase onto Magnetic Nanoparticles and Evaluation of the Enzymatic Properties
This paper reports on a novel and efficient β-glucosidase immobilization method using magnetic Fe3O4 nanoparticles as a carrier. Based on response surface methodology, the optimal immobilization conditions obtained were: glutaraldehyde (GA) concentration, 0.20%; enzyme concentration, 50.25 μg/mL; cross-linking time, 2.21 h; and the maximum activity recovery reached 89.35%. The magnetic immobili...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملDesign of Superparamagnetic Iron Oxide Nanoparticle for Purification of Histidine- Tagged Recombinant Proteins
We report a novel purification system for 6 His-tagged proteins by magnetic affinity separation. We have developed superparamagnetic Fe3O4@SiO core-shell particles with immobilized surface iminodiacetate groups to chelate with Ni. This Ni magnetic silica nanoparticle has been shown as an efficient carrier, binder and anchor to obtain his-tagged protein directly from total cell lysate. The struc...
متن کامل